Concept information
Terme préférentiel
Ceva's theorem
Définition
-
In Euclidean geometry, Ceva's theorem is a theorem about triangles. Given a triangle △ABC, let the lines AO, BO, CO be drawn from the vertices to a common point O (not on one of the sides of △ABC), to meet opposite sides at D, E, F respectively. (The segments AD, BE, CF are known as cevians.) Then, using signed lengths of segments,
In other words, the length XY is taken to be positive or negative according to whether X is to the left or right of Y in some fixed orientation of the line. For example, AF / FB is defined as having positive value when F is between A and B and negative otherwise.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Ceva%27s_theorem)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-WS61VZXF-C
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}