Concept information
Terme préférentiel
Witten zeta function
Définition
-
In mathematics, the Witten zeta function, is a function associated to a root system that encodes the degrees of the irreducible representations of the corresponding Lie group. These zeta functions were introduced by Don Zagier who named them after Edward Witten's study of their special values (among other things).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Witten_zeta_function)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-WKN6VCP6-V
Equivalence exacte
en.wikipedia.org
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}