Concept information
Terme préférentiel
asymptotic expansion
Définition
-
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Asymptotic_expansion)
Concept générique
Synonyme(s)
- asymptotic series
- Poincaré expansion
Traductions
-
français
-
série asymptotique
URI
http://data.loterre.fr/ark:/67375/PSR-RHCS7KGF-C
Equivalence exacte
en.wikipedia.org
fr.wikipedia.org
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}