Concept information
Terme préférentiel
Riemann-Roch theorem
Définition
-
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus g, in a way that can be carried over into purely algebraic settings.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Riemann%E2%80%93Roch_theorem)
Concept générique
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-PBCDPN1D-0
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}