Concept information
Terme préférentiel
hyperperfect number
Définition
-
In number theory, a k-hyperperfect number is a natural number n for which the equality n = 1 + k(σ(n) − n − 1) holds, where σ(n) is the divisor function (i.e., the sum of all positive divisors of n). A hyperperfect number is a k-hyperperfect number for some integer k. Hyperperfect numbers generalize perfect numbers, which are 1-hyperperfect.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hyperperfect_number)
Concept générique
Synonyme(s)
- k-hyperperfect number
Traductions
-
français
-
nombre k-hyperparfait
URI
http://data.loterre.fr/ark:/67375/PSR-NN65JB7S-Z
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}