Passer au contenu principal

Mathematics (thesaurus)

Choisissez le vocabulaire dans lequel chercher

Concept information

Terme préférentiel

Weil's criterion  

Définition

  • In mathematics, Weil's criterion is a criterion of André Weil for the Generalized Riemann hypothesis to be true. It takes the form of an equivalent statement, to the effect that a certain generalized function is positive definite.
    Weil's idea was formulated first in a 1952 paper. It is based on the explicit formulae of prime number theory, as they apply to Dirichlet L-functions, and other more general global L-functions. A single statement thus combines statements on the complex zeroes of all Dirichlet L-functions.
    Weil returned to this idea in a 1972 paper, showing how the formulation extended to a larger class of L-functions (Artin-Hecke L-functions); and to the global function field case. Here the inclusion of Artin L-functions, in particular, implicates Artin's conjecture; so that the criterion involves a Generalized Riemann Hypothesis plus Artin Conjecture.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Weil%27s_criterion)

Concept générique

Traductions

URI

http://data.loterre.fr/ark:/67375/PSR-ND145CB9-V

Télécharger ce concept :

RDF/XML TURTLE JSON-LD Date de création 22/08/2023, dernière modification le 18/10/2024