Concept information
Terme préférentiel
algèbre géométrique
Définition
-
Une algèbre géométrique est, en mathématiques, une structure algébrique, similaire à une algèbre de Clifford réelle, mais dotée d'une interprétation géométrique mise au point par David Hestenes, reprenant les travaux de Hermann Grassmann et William Kingdon Clifford (le terme est aussi utilisé dans un sens plus général pour décrire l'étude et l'application de ces algèbres : l'algèbre géométrique est l'étude des algèbres géométriques). Le but avoué de ce physicien théoricien et pédagogue est de fonder un langage propre à unifier les manipulations symboliques en physique, dont les nombreuses branches pratiquent aujourd'hui, pour des raisons historiques, des formalismes différents (tenseurs, matrices, torseurs, analyse vectorielle, utilisation de nombres complexes, spineurs, quaternions, formes différentielles…). Le nom choisi par David Hestenes (geometric algebra) est celui que Clifford voulait donner à son algèbre.
(Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Alg%C3%A8bre_g%C3%A9om%C3%A9trique_(structure))
Concept générique
Concepts spécifiques
Synonyme(s)
- algèbre de Clifford réelle
Traductions
-
anglais
-
real Clifford algebra
URI
http://data.loterre.fr/ark:/67375/PSR-MLKN79JS-9
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}