Concept information
Terme préférentiel
partially ordered set
Définition
-
In mathematics, especially order theory, a partial order on a set is an arrangement such that, for certain pairs of elements, one precedes the other. The word partial is used to indicate that not every pair of elements needs to be comparable; that is, there may be pairs for which neither element precedes the other. Partial orders thus generalize total orders, in which every pair is comparable.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Partially_ordered_set)
Concept générique
Concepts spécifiques
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-MD58W50J-R
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}