Concept information
Terme préférentiel
algèbre de von Neumann
Définition
-
Une algèbre de von Neumann (nommée en l'honneur de John von Neumann) ou W*-algèbre est une *-algèbre d'opérateurs bornés sur un espace de Hilbert, fermée pour la topologie faible, et qui contient l'opérateur identité (définition « concrète ») .
Les algèbres de von Neumann sont des C*-algèbres. De façon surprenante, le théorème du bicommutant de von Neumann montre qu'elles admettent une définition purement algébrique équivalente à la définition topologique. Une troisième caractérisation d'une algèbre de von Neumann est donnée par Sakai, faisant appel à la notion de prédual. Von Neumann et d'autres ont étudié les W*-algèbres en tant que structure mathématique associée au concept d'algèbre des observables de la mécanique quantique.
(Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Alg%C3%A8bre_de_von_Neumann)
Concept générique
Synonyme(s)
- W*-algèbre
Traductions
-
anglais
-
W*-algebra
URI
http://data.loterre.fr/ark:/67375/PSR-JXF76GDR-C
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}