Concept information
Terme préférentiel
polynôme minimal
Définition
-
En mathématiques, le polynôme minimal d'un élément u d'une algèbre associative unifère sur un corps commutatif est, s'il existe, le « plus petit » polynôme unitaire (non nul) P à coefficients dans ce corps tel que P(u) = 0, c'est-à-dire de degré minimum parmi ceux qui annulent u, et également diviseur de tous les polynômes qui annulent u.
Très souvent, on introduit directement le polynôme minimal dans des cas un peu plus particuliers :
- en algèbre linéaire comme polynôme minimal d'un endomorphisme d'un espace vectoriel de dimension finie (ou d'une matrice carrée);
- en théorie des corps comme polynôme minimal d'un élément algébrique d'une extension de corps.
(Wikipedia, L'Encylopédie Libre, https://fr.wikipedia.org/wiki/Polyn%C3%B4me_minimal)
Concept générique
Traductions
-
anglais
URI
http://data.loterre.fr/ark:/67375/PSR-J0LH5512-X
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}