Concept information
Terme préférentiel
inequality of arithmetic and geometric means
Définition
-
In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and further, that the two means are equal if and only if every number in the list is the same (in which case they are both that number).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/AM%E2%80%93GM_inequality)
Concept générique
Synonyme(s)
- AM-GM inequality
Traductions
-
français
URI
http://data.loterre.fr/ark:/67375/PSR-F9XKFTD5-D
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}