Concept information
Término preferido
pseudo-Riemannian manifold
Definición
-
In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed. Every tangent space of a pseudo-Riemannian manifold is a pseudo-Euclidean vector space. A special case used in general relativity is a four-dimensional Lorentzian manifold for modeling spacetime, where tangent vectors can be classified as timelike, null, and spacelike.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Pseudo-Riemannian_manifold)
Concepto genérico
Conceptos específicos
Etiquetas alternativas
- semi-Riemannian manifold
En otras lenguas
-
francés
URI
http://data.loterre.fr/ark:/67375/PSR-WNF2W5WC-J
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}