Skip to main

Mathematics (thesaurus)

Search from vocabulary

Concept information

mathematical analysis > combinatorics > Wilf-Zeilberger pair
algebra > combinatorics > Wilf-Zeilberger pair
algebra > elementary algebra > identity > Wilf-Zeilberger pair

Término preferido

Wilf-Zeilberger pair  

Definición

  • In mathematics, specifically combinatorics, a Wilf–Zeilberger pair, or WZ pair, is a pair of functions that can be used to certify certain combinatorial identities. WZ pairs are named after Herbert S. Wilf and Doron Zeilberger, and are instrumental in the evaluation of many sums involving binomial coefficients, factorials, and in general any hypergeometric series. A function's WZ counterpart may be used to find an equivalent and much simpler sum. Although finding WZ pairs by hand is impractical in most cases, Gosper's algorithm provides a sure method to find a function's WZ counterpart, and can be implemented in a symbolic manipulation program.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Wilf%E2%80%93Zeilberger_pair)

Concepto genérico

Etiquetas alternativas

  • WZ pair

En otras lenguas

URI

http://data.loterre.fr/ark:/67375/PSR-W61JPXLT-H

Descargue este concepto:

RDF/XML TURTLE JSON-LD Creado 27/7/23, última modificación 24/8/23