Concept information
Término preferido
Wilf-Zeilberger pair
Definición
-
In mathematics, specifically combinatorics, a Wilf–Zeilberger pair, or WZ pair, is a pair of functions that can be used to certify certain combinatorial identities. WZ pairs are named after Herbert S. Wilf and Doron Zeilberger, and are instrumental in the evaluation of many sums involving binomial coefficients, factorials, and in general any hypergeometric series. A function's WZ counterpart may be used to find an equivalent and much simpler sum. Although finding WZ pairs by hand is impractical in most cases, Gosper's algorithm provides a sure method to find a function's WZ counterpart, and can be implemented in a symbolic manipulation program.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Wilf%E2%80%93Zeilberger_pair)
Concepto genérico
Etiquetas alternativas
- WZ pair
En otras lenguas
-
francés
URI
http://data.loterre.fr/ark:/67375/PSR-W61JPXLT-H
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}