Skip to main

Mathematics (thesaurus)

Search from vocabulary

Concept information

algebra > differential algebra > Liouvillian function
mathematical analysis > function > Liouvillian function

Término preferido

Liouvillian function  

Definición

  • In mathematics, the Liouvillian functions comprise a set of functions including the elementary functions and their repeated integrals. Liouvillian functions can be recursively defined as integrals of other Liouvillian functions.
    More explicitly, a Liouvillian function is a function of one variable which is the composition of a finite number of arithmetic operations (+, −, ×, ÷), exponentials, constants, solutions of algebraic equations (a generalization of nth roots), and antiderivatives. The logarithm function does not need to be explicitly included since it is the integral of 1/x.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Liouvillian_function)

Concepto genérico

En otras lenguas

URI

http://data.loterre.fr/ark:/67375/PSR-TT84D1VH-3

Descargue este concepto:

RDF/XML TURTLE JSON-LD Creado 23/8/23, última modificación 18/10/24