Concept information
Término preferido
Hadamard manifold
Definición
-
In mathematics, a Hadamard manifold, named after Jacques Hadamard — more often called a Cartan–Hadamard manifold, after Élie Cartan — is a Riemannian manifold that is complete and simply connected and has everywhere non-positive sectional curvature. By Cartan–Hadamard theorem all Cartan–Hadamard manifolds are diffeomorphic to the Euclidean space . Furthermore it follows from the Hopf–Rinow theorem that every pairs of points in a Cartan–Hadamard manifold may be connected by a unique geodesic segment. Thus Cartan–Hadamard manifolds are some of the closest relatives of .
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hadamard_manifold)
Concepto genérico
En otras lenguas
-
francés
URI
http://data.loterre.fr/ark:/67375/PSR-TRQCTHTV-Z
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}