Concept information
Término preferido
zeta function universality
Definición
-
In mathematics, the universality of zeta functions is the remarkable ability of the Riemann zeta function and other similar functions (such as the Dirichlet L-functions) to approximate arbitrary non-vanishing holomorphic functions arbitrarily well.
The universality of the Riemann zeta function was first proven by Sergei Mikhailovitch Voronin in 1975 and is sometimes known as Voronin's universality theorem.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Zeta_function_universality)
Concepto genérico
En otras lenguas
-
francés
URI
http://data.loterre.fr/ark:/67375/PSR-N5NBZ0J5-7
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}