Skip to main

Mathematics (thesaurus)

Search from vocabulary

Concept information

number > number theory > analytic number theory > L-function > zeta function universality

Término preferido

zeta function universality  

Definición

  • In mathematics, the universality of zeta functions is the remarkable ability of the Riemann zeta function and other similar functions (such as the Dirichlet L-functions) to approximate arbitrary non-vanishing holomorphic functions arbitrarily well.
    The universality of the Riemann zeta function was first proven by Sergei Mikhailovitch Voronin in 1975 and is sometimes known as Voronin's universality theorem.
    (Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Zeta_function_universality)

Concepto genérico

En otras lenguas

URI

http://data.loterre.fr/ark:/67375/PSR-N5NBZ0J5-7

Descargue este concepto:

RDF/XML TURTLE JSON-LD Creado 22/8/23, última modificación 18/10/24