Concept information
Término preferido
minimal polynomial
Definición
-
In field theory, a branch of mathematics, the minimal polynomial of an element α of an extension field of a field is, roughly speaking, the polynomial of lowest degree having coefficients in the smaller field, such that α is a root of the polynomial. If the minimal polynomial of α exists, it is unique. The coefficient of the highest-degree term in the polynomial is required to be 1.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Minimal_polynomial_(field_theory))
Concepto genérico
En otras lenguas
-
francés
URI
http://data.loterre.fr/ark:/67375/PSR-J0LH5512-X
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}