Concept information
Término preferido
Cantor's diagonal argument
Definición
-
In set theory, Cantor's diagonal argument, also called the diagonalisation argument, the diagonal slash argument, the anti-diagonal argument, the diagonal method, and Cantor's diagonalization proof, was published in 1891 by Georg Cantor as a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers. Such sets are now known as uncountable sets, and the size of infinite sets is now treated by the theory of cardinal numbers which Cantor began.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Cantor%27s_diagonal_argument)
Concepto genérico
Etiquetas alternativas
- anti-diagonal argument
- Cantor's diagonalization proof
- diagonal slash argument
- diagonalisation argument
En otras lenguas
-
francés
-
argument de la diagonale
-
argument diagonal
URI
http://data.loterre.fr/ark:/67375/PSR-C29NNV79-M
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}