Concept information
Término preferido
Fermat polygonal number theorem
Definición
-
In additive number theory, the Fermat polygonal number theorem states that every positive integer is a sum of at most n n-gonal numbers. That is, every positive integer can be written as the sum of three or fewer triangular numbers, and as the sum of four or fewer square numbers, and as the sum of five or fewer pentagonal numbers, and so on. That is, the n-gonal numbers form an additive basis of order n.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Fermat_polygonal_number_theorem)
Concepto genérico
En otras lenguas
URI
http://data.loterre.fr/ark:/67375/PSR-B9VPVML7-J
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}