Concept information
Preferred term
Hardy-Littlewood zeta-function conjectures
Definition
-
In mathematics, the Hardy–Littlewood zeta-function conjectures, named after Godfrey Harold Hardy and John Edensor Littlewood, are two conjectures concerning the distances between zeros and the density of zeros of the Riemann zeta function.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Hardy%E2%80%93Littlewood_zeta-function_conjectures)
Broader concept
In other languages
URI
http://data.loterre.fr/ark:/67375/PSR-WP4N5PXM-0
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}