Concept information
Preferred term
Witten zeta function
Definition
-
In mathematics, the Witten zeta function, is a function associated to a root system that encodes the degrees of the irreducible representations of the corresponding Lie group. These zeta functions were introduced by Don Zagier who named them after Edward Witten's study of their special values (among other things).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Witten_zeta_function)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-WKN6VCP6-V
Exactly matching concepts
en.wikipedia.org
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}