Concept information
Preferred term
vector bundle
Definition
-
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space (for example could be a topological space, a manifold, or an algebraic variety): to every point of the space we associate (or "attach") a vector space in such a way that these vector spaces fit together to form another space of the same kind as (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over .
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Vector_bundle)
Broader concept
Narrower concepts
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-RD2D0P6C-W
Exactly matching concepts
en.wikipedia.org
fr.wikipedia.org
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}