Concept information
Preferred term
pole
Definition
-
In complex analysis (a branch of mathematics), a pole is a certain type of singularity of a complex-valued function of a complex variable. It is the simplest type of non-removable singularity of such a function. Technically, a point z0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z0.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Zeros_and_poles)
Broader concept
Synonym(s)
- zeros and poles
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-RCD6B9ZW-X
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}