Concept information
Preferred term
regular prime
Definition
-
In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers.
The first few regular odd primes are :
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43, 47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127,
137, 139, 151, 163, 167, 173, 179, 181, 191, 193, 197, 199, ... (sequence A007703 in the OEIS).
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Regular_prime)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-Q5SP52VZ-9
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}