Concept information
Preferred term
Ringel-Hall algebra
Definition
-
In mathematics, a Ringel–Hall algebra is a generalization of the Hall algebra, studied by Claus Michael Ringel (1990). It has a basis of equivalence classes of objects of an abelian category, and the structure constants for this basis are related to the numbers of extensions of objects in the category.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Ringel%E2%80%93Hall_algebra)
Broader concept
In other languages
-
French
URI
http://data.loterre.fr/ark:/67375/PSR-KFG41696-F
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}