Concept information
Preferred term
fundamental theorem of algebra
Definition
-
The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero.
(Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra)
Broader concept
Synonym(s)
- d'Alembert-Gauss theorem
- d'Alembert's theorem
In other languages
-
French
-
théorème de d'Alembert
-
théorème de d'Alembert-Gauss
URI
http://data.loterre.fr/ark:/67375/PSR-GWHQ34T9-7
{{label}}
{{#each values }} {{! loop through ConceptPropertyValue objects }}
{{#if prefLabel }}
{{/if}}
{{/each}}
{{#if notation }}{{ notation }} {{/if}}{{ prefLabel }}
{{#ifDifferentLabelLang lang }} ({{ lang }}){{/ifDifferentLabelLang}}
{{#if vocabName }}
{{ vocabName }}
{{/if}}